
~eAO43 491 CARNE6IE—I~~LLON (~4IV PITTSBUROH PA DEPT OF COMPUTER —ETC n e 9/acowmos. REQUIREtCNTS FOfi THE DESIØN Off PRODUCTION SYSTEM ARCH!T €TC(U)
Mt 77 N D RYCHENER FU’4620—73—C—0074

UNCLASSIFIED AFOSR —TR —77—1145 II.
O F I

END
- DATE

FItUED

9 -77

~
~~~~~~~~~~~~ - 

-
~ 

— - -
~ 

- ..-
~---~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__________ - — — 
~~~~~~~~~~~~~~~ 

—--- •
~~~~~~~ 

,

~~

- .

~~os~-~~. 7 7 - 1 i 45

Contro l Requirements for the Desi gn

of Production System Archi tectures

Michael D. Rychener
June 1977

Depart m ent of Computer Science
Carnegie- Mellon University

Pittsburg h, PA 152 13

~ or p~~~11C re1eaS~~

distr 1bUt ~~°~ ~ :j I ~~it e d.

This paper has been su bmitted for presentation at the Al 0 PL Symposium , ACM SIGAPT —

SI GPLAN , Rochester , NY , August , 19 77.

This research was suppor ted in part by the Defense Advanced Rpcearch Projects Agency
under Contract no. F~~ 62O-73-C-OO7 ~ and monitored by the Air Force Off ice of Scientific
Researc h.

>-

C-,

-~~ --



— — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~ ~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~ _

- 

i~~
_ — 

-V—— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AIR IORCE OFFI~~
OF SCIENTIFIC R~S~ARCU (AJSC)

NOTICE OF TRANSM ITTAL TO DDC
This i~~~~~~~~~~ W�Tt has been revieled end te

approved for pub1~-C release LAW A!R 190—12 (7b).

~istrIbut I01~
is unlimited. - - •

A. D. BLOSE
Technical Inf O~~~ tiOfl Officer .

~~~~~~~ ~~~~~~~~~~~~~



__________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~ - 
- 

-

- 
S t . , U R I I Y  C L A S S I t  c A T I O N  OF T H I S  P A G E  (I7i.n 0.1. Eniar ’~j

U~~l L1~JI.IJ P1 r~ “ u i ’u i - BEFORE COMPLETING FORM
DED

~~~~~~~~~~~~~
IIH

~~~
’TA

~~~•fl~~ p AS’~~ 
READ INSTRUCTIONS

I: REPORT NUMB / j 2. GOVT ACCESS ION No. 3. REC,PIENrS C A T A L O G NUMBER

AF S Ti3-~ 7 7—.1 1 4 ,~~~~~ ~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _r ~rrrr7~~T.~~b1,1l.) . 5. TYPE OF REPORT 6 PERIOD COVERED

-~~~~~~~-~~~~~~~

(.;..~CONTROL~~ EQUIREMENT S FOR THE ..~DESICN Inte&4m
OF PRODUCTION SYSTEM ARCHITECTURES, / 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR G R A N T NUMBER(S)

J) Michael D /RYchener~~ (/ ~~~~F4462~~~~~~~~~~ 5~~~ <

9. PERFORMING O R G A N I Z A T I O N NAME AND ADDR ESS 10. PROGRAM ELEMENT , PROJE CT . TASK
AR E A 6 WORK UNIT NUMBER S

• C.irnegie-Mellon University -

Computer Science Dept. ~
2—..~6I1~ 2F

~~P itt sburgh , PA 15213 ~~ ~~~~~~~

It . CONTROLLI NG OFFICE N A M E A N D ADDRESS ________

Defense Advanced Research Projects Agency //~~Ju 1
~~~~~~~~1400 Wilson Blvd ~~

‘
~N U M B

Arlington , VA 22209 
.14 MONIT ORING AGENCY N A M E  & ADORESS( If dIfferent front Controlling OffIce) IS SECURITY CLASS (of in,.

Air Force Office of Scientific Research (NM)
Boiling AFB, DC 20332 IT N CT .AS~ TFTF.fl

ISa , DECLASSI FICA T ION/DOWNGRADINO
SCHEDULE

1 5. DISTRIBUTION STATEMENT (of thu Report)

Approved for public reie.e’~e; - -d-fstributi.un unlimited. -

(~~1 ~~ 
/ / L

c
IT . DI STR IBUTION STATEMENT (of ha abstract .nt. t.d In Block 20, Ii dii I.r ~~fl~~oi~~ .porl)

1$. SUPPLE MENTARY NOTES

19. KEY WORD S (Cent m u .  on r.t’.r.. .Id. If n.c....r r sid ld•ntlfy by block ntmib.r)

20. A BSTRA CT (Cont inue on r.v.r.. .ld. If nsc.ssavy ~ td id.nhlfy by block numb.r) Programs in the art i f ic ia l
~n tei1i gence domain impose unusual requirements on control structures. Produc-
tion systems are a control structure with promising attributes for building
generally intelli gent systems wi th  larg e knowled ge base s. This raper presents
examples to illustrate the unusua l pos ition taken by pr oduct ion systems on a
number of control and pat tern-matching issues. Examp les are chosen to i l l us trat
certain powerfu l features and to provide critical tests which mi ght be used to
eva luate the effectivenens of new desi gns.

L_ ____
DO , ~~~~~~~ 1473 EDIT1ON o~ 1 NOV 65 ~s OBSOLETE

S/N 0 1 0 2 - 0 1 4 - 6 6 0 1  I UNC J~ASSIFIED
SECURITY CLASS! FICAT IOM OF THIS PAG E (USipo bat. En15r ()

i / u -  2 , ’ <A ~~~
/

L~-’ (LI ‘.—) ~~~ U /



-~ — 
~~~~~~~~ ~ ~~~~~~~~~~~~~~~ 

-
~~~~~~~~~

‘
~
.--—--‘

~ 
‘ ‘

~~~~
‘
.
~~~
“

~~~ ‘~‘~ -—‘-~‘~~.-~~ ‘r  “t”_ - - -.

I
I

AI~~ PL

Table of Contents

SECTION
- -

-

-
PAGE -

1 Introduction 1
1.1 History and Definition 1

2 Examples of Control Requirements 4
2.1 Sequencing and Subroutining 5
2.2 Iteration and Possibilities Generation 9
2.3 Hierarchical organization 11
2.4 Selection 12

3 Summary 14
3.1 Acknowledgments 14

4 References 14

ACCESSION for

NTIS White Section
D DC Bu tt Section 0 -

IJNANNOIINC ED 0
JUST IFIC.~TIO N

BY

DIS1RIB~I~I!1IAVAftABIUT Y CODE S
• ,4 t~ L ~~I/~ r St t AL

L •. .

-

~~~~.L. • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-

~~~~~

,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--
~~ ~

-
~~~~~~~~~~~

- .-

~
“, -“ ,- ,,——

, .

AI~~~PL. -

Abstract. Programs in the artificial intelligence domain impose unusual requirements on
- CQntrO l structures. Production systems are a control structure with promising attr ibutes
for building generally intelli gen t systems with large knowledge bases. This paper presents
examples to i llustrate the unusual position taken by production systems on a number of
control and pattern-matching issues. Examp les are chosen to illustrate certain powerful
fea tures and to provide critical tests which might be used to evaluate the effectiveness of
new designs.

1. Introduction

There are a number of common contro l usages in programs in the arti f icial
intelligence (Al) domain that impose requirements on control structures. Production
systems (PSs) are a control structure with promising attr ibutes for building generall y
intelligen t systems with large knowledge bases. The PS approach to a number of control
issues is unusual and i.s suff ic ient l y novel to warrant a detailed discussion. This paper

-
gives a number of examples of the constructs used for control in some existing PS
implementations of Al systems. -

Examp les are also used here to just i fy a number of desi gn features of particular PS
languages. Tha t is, examples are chosen to illus trate certa in powerful features and to
provide cr i t i ca l tests which mig ht be used to eva luate th~- ef fect iveness of new designs.
This concern for explicit , deta i le d design just i f icat ion arises from a per nived failure of
language designers within Al to communicate such aspects for exist ing designs.
Justif ication tends to be neg lected 1)0th for basic language princi ples and for low-level
language features such as pattern-matching primitives. ft~cause of a number of speci f ic
object ions to the PS approach historicall y, the evaluation of PSs as an Al language has
been done with more than the usual care (Rychener , 1976). This paper draws on that
evaluation experience.

-

1.1. Hk4~~y and Defln~~on

The use of PSs in Al derives from research in several fields of computer science.
Their invention as a formal speci f icat i on of aI~ or ithms dates from the niid-19~ Os , as Post
productions or Markov algorithms (Minsky, 1967). Floyd- Evans productions are a variant
on the PS concept used for parsing programming languages (Evans , 196~). Mos t
significantly, PSs have benn adapted to the task of modelling human memory and problem-
solving processes (Newell , 19’/2; Newell and Simon, 1972). Within Al , there have been a
number of succos cf ul pro jec ts involving PSs or similar rule-based architectures , to various
degrees: Waterm a n’s (1970) poker learning program , the Heuristic DENDRAL program
(Buchanan and Sridharan , 1973), and Short l i f fe ’s MYCIN medical diagnosis program (Davis ,
et al., 1975).

1 1.1

.~_. ~~_as - .~~~~~~
_.__. _ t _ — _ - .

~is . __ ...~~n. .. .A g . ‘.~~~~~~-‘ - -...~~— “‘~ —

I _-
~~~~~~~

_ _._ • - --- -
~~
- 

~~
‘

~
‘-‘

~~ 
‘ - ~~~~~~r~~~~~ ~~~~~~~~~~~

Al ~ PL Introduction 1.1

A PS is a se t of condition-action rules representing an algorithmic procedure on
some domain. A rule, or production, app lies to an element of the domain whene’.er its
condition is true. The application of the production results in executing its action,
producing another domain element. In A! applications , the domain is typically a space of
symbolic mode ls of situations. A production ’s condition is a conjunction of schematic —

patterns for symbol structures , and its action is an unconditional sequence of additions ,
modifications , rep lacemen ts , and deletions of symbol structures. Sequences of symbolic
changes, resulting when productions are applied to a model, are taken to correspond to
the modelled system’s dynamic behavior. 

-

To narrow the scope to a practical or definite computation al tool requires the
specif ication of a production ~~stem archit ecture. Such an architecture has four
components: Working Memory, Production Memory, a recognize-ac t cycle , and a procedure
for resolving conflicts between competing productions. 

-

Working Merj~or~ is the structure containing the dynamic knowledge state of the
system, referred to above as a model of a situation. Abstractions of Working Memoryr elements are the primary constituents of production conditions , and mani pulations of
Working Memory elements are the primary constituents of production actions. Specifying
the Working Memory places constraints on the attr ibutes of its elements and on the
relationshi ps between elements. -

~rodLIc tion Memor~ contains all of the productions , and its specifica tion defines
allowa ble forms for productions and their relationshi ps wit hin the memory structure.
Production actions usually include operators for modifying the Production Memory.

The recognize-act ç,~çJ~ serves to control the application of productions. The usual
f orm is that first a recognition occurs , ir wh ich a production or a set of produc t ion~ is
found to have its conditions satisf ied with respect to the present Working Memory. The
recogni tion usually Involves matching abs tract forms to specific elemeti ts. Then a selection
from the recognized set is made , and the corresponding sequences of actions are
performed. Performing the actions results in a new Working Memory state , and the cycle
starts over with another recognition.

The selection from the set of recognized productions is according to confl ict
resolut ion pjj~~i~~~s. These princi ples are usuall y based on the stat ic structure of
Working Memory or Production Memory, or on dynamic aspec ts of the system ’s operation
suc h as recency of addition.

The particular architecture and language used here is called OPS (Forgy and
McDermott , 1976). Production Memory in OPS is an unstructured , unordered set of
production’ . Working Memory is likewise an unordered se t of list structures , without
duplica t ions. It is bounded in size , by deleting elements whose last assertion occurred
more than some arbitrary number of system ac tions in the past (currently 300).

For conflict resolution the following rules apply, in order (McDermott and Forgy,
1977).
I. Ref r ;tc lion: a production is not fired twice on the same data ( instantiation of a pattern)

unless so t ne pa rt of that data has been re-inserted into Working Memory since the
previ ous firing. This prevents mos t infinite loops and other useless repetitions.

2 1.1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
~~~~~~~~~~~~~ 

- -  
—‘-- .-----

~~~ 

-

~ Introduction 1.1

2. Lexicographic recency: the production using the most recently inserted elements of
- Working - Memory is preferred . “Most recent ’ is determined lexicographicall y, i.e., if

there is a tie on the most recent element used, the next -most recent elements are
-

- compared , and so on. This rule serves to focus the attention of the system very
st rongly on more recent events , allowing curren t goals to go to comp le tion before
losing control.

3. Special case: a production is preferred that has more conditions , including negat ive
conditions which do not matc h to specif ic memory elements. Most of the meaning of
having one produc tion be a special case of another is captured by rule 2, since a
special case that uses more data than a general one is lexicographica lt y more recent
(by the OPS definition). Preferring special cases to general ones follows the
expectat ion that a spec if c method is more appropriate to a situation than a more
general one.

4. Production recency: the more recentl y created production is preferred. This is used
only in sys tems that grow by adding pr oductions dynamically and only in the case of
productions with identical conditions. In such a context , the more recent production is
taken as more appropriate.

5. Arbitrary: a selection is made among multi ple ma tches to the same production using the
same data. -

As a matter of pract ice , conflict resolut ton rarel y requires more than the f irst two rules.

OPS has several other distinguishing features. The pat tern matching allows a lit ted
for m of segment variables , namel y, a variable may m atch an indef ini te— s ized tail of a l ist.
The Pa ttern—And (Pand) featur e nllows an expression to be matched to several patter ns ,
and then bound to a variable. OPS allows compl ex negative condit ions to be specified , for
instance , including the negation of an entire production condition within the condition of
another produc tion. Product io~ts in OPS are compiled into an eff ic ient network form , ra ther
than interpreted. OPS has an operator for adding productions to Produc +ion M - m o ry
which have been formed (in terms of an appropriate data structure) in Working Memory;
‘;uch additions are done direc tly into the comp iled network during the runtime cycle.

The following section will explain the OPS notation as examp les are introduced.

In addition to the definitio n of our PS given above , our approach has a number of
distinctive features. A major part of our approach lies in representation assumptions.
Working Memory, though large , is cons idercd to be short- term only. All long—term fac ts
and interconnections between them (e.g. sema ntic networks) are stored as productions.
Thus all augmentation of a PS by itself is done by forming new productions. The way that
ac tion develops from the PS d i f fe rs from some others in being a forward recognit ion-
driven cycle , ra ther than a backward-chaining, goal-driven cycle , as in the MYCIN system
(Davis , et at ., 1975). The system is controlled by signals and symbol structures in the
global Working Memory, called goals , which are inc luded expl ic i t l y in produc tion conditions
when appropriate. This is in con trast to MYCIN and to DENDRAL (Buchanan and Sridharari ,
1973). The PS architecture is used as the total system , rather than having it be one of a
number of procedural components. Other systems have employed additional , non-PS
procedures for such activi t ies as modif y ing and anal yzing the PS. Working Memory is
arbi t rary list s tructures in an extensive database—like structure , wi th a vast majority of
items exp lic itly stored rather than represented as computable predicates. Production
conditions make use of general pattern-matching capab il ities , as is comm on in other recent

-

3 1.1

— ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~ ~
-
~
—‘r--”-

~ ~~~~ ~~~~~~~~ — —
-

A! @ PL Introduction 1.1

Al languages (Bobrow and Raphael, 1974). Though the general architecture derives from
concern for human cognit ion (Newell , 1972, Newell and Simon, 1972) , litt le consideration is
given to psychological constraints.

2. Examples of Control Requirements

The examples in this section demonstrate the effect of conflict resolution principles
and of pattern-ma tching primitives on the ease of achieving control. Control in PSs is
primari l y through goals in Working Memory. A goal is loosely defined to encompass:
1, a descrip tion of the purpose or desired final state of processing, or a specif ication of a

problem operator to be app lied; thus it is a focus , or some thing to come back to during
pr ocessing; there may he tests (productions) associat ed with a goal , to ensure that it is
properl y achieved; -

2. possible relations t o other goals , e.g. suhgoal-supergoal;
3. a history of attempts to achieve the goal , and of their results;
4. associated methods , operators , da ta objects , heuristics , and priority orderings.

The following is an example of a goal:

(P IJTON SET (IJRNT) SET—3 Ot~ BLOC r—4)

This might be read: “wan t to puton the set Set-3 on Block-4” ; “puton” is a specific
operator for the syste m in which the goal occurs. Goats and o ther Working Memory
elements are represented , by convention, as lists (in Lisp notation) whose first two
positions give the main goal class (e.g. PUTON SET), w hose third position gives a “modalit y”
(e.g. (W ANT)), and whose remaining positions arc a description. This example is a simple
form , having only the first component of the above definition. More complex goals and
other examples of simple goals are discussed below.

Productions assert such control goals to achieve sequencing between steps in a
process , to coordina te hierarchies of control , to evoke methods to achieve subgoals , and to
control iterations. Other prod uctions respond to such goals , taking account of both their
content and the surrounding Working Memory data contex t. Goals may vary in complexity
from single list structure s to complex Working Memory and Production Memory
combinations. Longer-term control can be achieved by adding productions to Production
Memory that can respond to such goals. There is an OPS action to facil i tate this.

The following discussion of control is based primarily on anal ysis of the PS
implemen tations of a number of “classical ” Al programs (Ryc hener , 1976): Bobrow ’s
Student , Fei genbaum’s Epam, GPS of Newell et at., a King-Pawn-King chess endgame
program, and a natural language understan ding program coupled with a toy blocks
problem-solving program as done by W inograd.

4 - 2.

k—— -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~ ~~~

-

~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_~~~~~ _~~~~~~~~-,_.; ~_-..‘~~~~~
—

~~~~~~~~~~-
- 

-.

A ! ~ PL Examples of Control Requirements 2.1

2.1. Sequencing and Subroutj~je

Sequencing is performing the steps of a process in a specified order. Because PSs
are sequenced only by the recognize-act cycle , in whic h potentially a large sct of
productions are candidates f or firing, there is both the need for exp lici t sequencing by
Working Memory goals and the opportunity for develop ing forms of sequencing not
ava ilable in conventional control structures.

Subroutining is the suspension of a process while essential secondary results are
obtained by some other process. This encomp asses such mechanisms as the conventional
subroLltine and the evocation of a subgoal in the process of achieving a goal.
Conventionally, this ac tion causes the establishment of a local control and data context ,
suc h that the subroutine has limiled access to the environment. But in PSs , only the
control context is local , while t he data context remains the global Working Memory. The
control context is local only to the extent that the “subroutine ” maintains its own control
goals and continues to react to them in a dominant way according to the confl ict resolution
principles. In the OPS architecture , at least , subroutines composed of subsets of the
entire PS cannot be established by any structural means.

-‘ 

~re are seven ways ti~at suc h control is achievod.

sequencing by goals be tween sets of produc tions: Each produèlion in a set of
- to perform a step in a comp lex decis ion process includes as an action a goal

5h~~L~~S the next step. Such goats at e stated generally, as opposed to being
pi oduc t ion—specif ic signals. It is a characterist ic of Al domains that long unconditional
sequences of actions are rare . f t  cast this is the case when Al programs are
imp lemented as FSs , which is a fa ir ly high level of exp ression. That is , it is common to
al ternate , at a high rate , tests of conditions wi th rta t e_ c ha n~~ng ac tions. (f3ut this is to be
expected , given the nature of intelli gence.) l i- us , it is con~rnon that sequencing betwee n
sets of productions is required to arrive at a complicated decision, with each step in the
sequence c ontributing to some aspec t. For examp le ,

SI (PUTO(4 SET (110)11) =S ON =0)
(SET ~1EM I)ER (HOVE TRUE ) ~:i OF =S) -

(OOJEC T SI2F. (HOVE 1RUE) =X OF =M)
(NOT (SET )-Wt1 B[R (HOVE 1RJ i~ N OF S)

(OBJECT SIZE (HOVE TRUE ) >X OF =N)
(PUTO N OBJECT ( WO NT ) =tl ON =0) ; -

An OPS production consists of a name (in this case SI), a list of conditions (the f i rs t  four
l ists , head ed by PIITON, SET, OBJECT , and NOT, in Si), an arr ow “— — > “, and a list of act ions
(t he second PUTON element is the onl y one in Si) , terminated by “;“. In order to f ire , the
condition of a production is matched to Working Memory (in the conventional pat tern—
match sense), set t ing up a correspondence of condition elements to memory e te l i ic ’ -it s
(w hich usually includes the binding of variable s in the conditions to tokens within memory
elements) . Then , using that correspondence to insta nt iate them , the actions of the
production are performed. Unless otherw ise defined , an act ion is a simp le insertion of the
instant iated element into Working Memory. The most common other ac tion is DELETE ,
whic h rer-noves an element from Working Memory.

5 2.1

L1 L. - --
~~~~~~~~~~~~~~~~ ~~~~~~~~~

--—
~~~~~

---
~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~
---- . _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - - —.

~~~

,—. -

Al ~ PL Exa mples of Control Requirements 2.1

Pa ttern variables are denoted by a variety of prefixes: “=“ for ordinary ones which can
have va lues bound to them or which, when bound, must ma tch that value; “

~~~
“ for those

that match anything other than the value bound; “>“ and “ <“ that match if the value to be
matched is greater than or less than the value bound to the variable , respectivel y. “NOT”
specif ies that the pattern match fails if an attempt to match the elements in its scope
succeeds. -

Si is part of a process to put a set of objects onto another object , in a toy bloc ’ c world
environment. It responds to the main “puton ” goal (f irst condition), selects a member of
the set to be put (second condition) , and force the selected member to be the one wi th the
grea test size (third and fourth conditions; the “NOT ” says there is no other set member
with a greater size). The action of SI is to assert a subgoal to “puton” the object selected
from the se t. (This is a simp l i f iE d version which ignores subtle ties of bookkeep ing and
main taining progress through thu set of objects.) For instance , S i would match ,

(PUTON SET (W ONT) SET— 3 ON B LOC K— 4)
(SEI F1EIIBER (HOVE T RUE) BLOC K— i OF SEI—3)
(OBJECT SIZE (HOVE TRUE) 15 OF BLO Cr— 1) -

and insert a goal ,

(PUTON OBJECT (WO NT) BLOC l~— 1 (IN BLOC~— 4) -

Si is supposed ly part of a nult i - -step process~ each step of which makes some decision or
selec tion and then directl y evokes the next step. For instance , it might be: se lect the
largest set member , verif y that space is available to put it on, select the ex a c t loca tion,
and do the actual put. Each such step r i ght involve several productions (or evocat ions of
subgoa ls for more complicated processing), to handle the various conditions possible in the
env iror.ment. -

In general , the examp les to be presented are just isolated parts of a large Production
Memory. There are usuall y a number of productions with similar conditions , respond ug to
s imilau goals uI)dur various con tex ts , e tc. What is presented here can onl y be informal
hints about the surrounding m emory contex t and problem environment. Also , productions
are sometimes simp lified sli ght l y to empha s ize the essential control aspects.

2. Fall-back control: A process evokes another by some goal structure , and along with
that asserts a cont inuation signal , which , when it even tuall y becomes dominan t in confl ict
reso lution by its recency, evokes whatever is to follow. For this case , the results
developed by the evoked process to sat is f y its own goats are not used directly by the
con tinuation in the evoking process. (Variations are given below.)

S2 (GR PSP OBJECT (W O NT) -B)
(C ROS PPiS OBJECT (HOVE TRUE) =B2 ~ �B) -

(CETR IDO F OBJECT WO NT) =B2)
(GR OSP OBJECT (WONT (ST EP 2)) ~B) ;

S2’ (F IC F UP OBJECT (W ~NT) -B)
— — > (ROS P OBJECT (WONT) ~B)

(RRISE HONO (W O NT)) ;

6 2.1

- _
~~~_ .~~~~~~~~~~~~ . - -~~ . — .._S.LLa ~~.e*... _.. ..~~~~~~._. ._ - - .~ ---- -—— - ----~~~——-— — ~~~~~~~~~~~~ ‘‘ - - — - —. - -.- -

—-~~~~~~~~~ ——a .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

- -‘
-

~

‘

iiI~
Al 0 PL Examp les of Control Requiremen ts 2.1

The goal in S2 is to grasp an object. S2 gives the case where t he hand is already
grasp ing some other object , so that a goal to get rid of the other object is necessary. The
“S notation in the second condition stands for “pa ttern—and ”, a conjoiner of two  patterns.
That is , “S” forces both “=B2” and “#B” to match the same token from the Working Memory
element. In this case , it amounts to allowing the variable B2 to be bound dLrring the match
to anything except the value bound to 13. The two goals that are actions in S2 are to be
ordered in terms of recency, with tb~ ~f fmost one bring the r are recent. That is , in OPS,
actions within the same production are given distinct ‘ t imes ” with respect to conf lic . t
r€ -olution , and are ordered in decreasing recc- ncy f rom left to rig ht. The ef fect  in this
c a se is that the GETRIDOF goal becomes dominant f i rs t , and later on, control  fa l ls back to
focus on the GRASP goal. Notice that t he GRASP goal is staled as a continuation of the
main GRA SP goal , as deno ted by the (STEP 2) marke r in the modality position. -

S2’ gives another goal , to p ick up so uii - thing. It breaks the go~ I into two sub goals , GRASP
and RAISE , wi- ic h are seque nced by their order in tho production . Note that there is- rio
con tinuation of the main goal as in 52 , as a ress ~t of the ads -g i ucy  of the two subgoa ls
given, both to solve the tas k com plctel~’, and to do so without further 1e~ting of condit ions
betw een the -two steps. - 

- - - - - 

- 
-

3. Direct result usage: A process evokcs anolhrr and perhaps asserts a continuation
goal , but unlike the preceding, the co nt inuat ion  mn~ 

- 
~~s direct use of results of the evoked

process , so that continuation occurs a so:n as suf f ic i e nt  resu lts arc develripuc l by tI c-
evoked process . Note that using thc Wu rk~n~ ivd cur y r~ cs-nc y c o r f ! h  I reso iuiion princi pL:
allows some eventual “ f al l - -bac k’ to the evoked proce s s , which m i ght g ive ris~ to ~n t  rsCi s-

- 
ri-sulk, in case t t  evoked l) 10C~~~5 is lef t  unfinished by the initial result—use cc - n i  mnua~ion.

S3 (GR O SP OBJECT (ilfl~lT (STEP 2 ) )  =8) -

(cansa I N C  OBJECT (H;~\’L TRUE ))
——> ( h OVE ((0(10 (W ONT ) TO =8) 

-
(Gn2 :~P OB JECT ( IIKN T ~ST EP 3 ) )  =8 1

S3 continues t i t e  method to achieve the GRASP goal by responding to a GPA~ l F-iG n e r ory
element with nothing in t he fourth position. Note that S3 becomes dominant as a i s  ‘— nit of
a new GRASPING element , while generall y the GRA SP OBJECT goal continuat ion would not
yet be dominant. The m ore genera l case of t - ~is f o rt -a of product ion would involve
recognizing results developing from a selection or go ne ra t ion of c l en o n ts , under the
conditions that the elements can be furth e r processed without wai t ing for more of the
same elements to be cnc ated. The following shows an alternative.

Il. Held result usage: A process evokes another , and its continu ation makes use of re s u i t s
of the evoked process , but the continuation is held from proceed ing LIfl hil all of the results
of the evoked process are developed. TI- m i s might be necessary , for exampl e , when some
comn p.-~rison or selection is to be made from among them. This is ensured t 1 t  oug li a
Working Memory element that is less recent than the prN -5 5  evocat ion , and who’ r
even tual becoming dom inant in conf l i c t  resolution results in firing a production that asserts
the continuation goal.

7 2.1

1 
---

~~~~~~~~~~~~~~~~~~~~~~ ~~~- - --— - a-- -~~ - —_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~~

‘
~~~~

‘
~

—-=‘ .- ,-.
~~~~~~~

-I
Al o PL

.
Examples of Control Requirements 2.1

S2 ” (C ROS P OBJECT (W ONT) =B)
(CROSP ING ‘IBJECT (HOVE TRUE) =B2 $ �B)

— — > (G ETR IOO F OBJECT (WONT) =82)
(CROSP OBJECT (HOLD (STEP 2)) =8)

S4 (GRRSP OBJECT (HOLD (STEP 2)) =8)
— — > (GROSP OBJECT (W O NT (STEP 2)) =B)

S2” is a minor variant of S2 , with HOLD in the second act ion in place of WANT. Here S4
responds only to the HOLD goal , so that t h e WANT is not em itt . i until it becomes dominant ,
all by itself . This ensures that all action star ted by the GETRIDOF goal in S2” goes to
comp letion before continuing, since that action will all be more recent than the held goal.
This would he proper to a context where an entire set of objects , say, were to he
generated before continuing. -

5. Comp lex goals as focus of control: Goals in an organized process such as heuristic
search can be composed of a number of pc ss bt y op tiona l attr ibutes. S ch goals represent

*
major processing s tates , anct an executive is required to manage the goals , evaluating
progress , measuring difficul ty, propagating success and fai l ’ ’ ~~ , ordering their
consideration , and alloca ting processing e f fo r t . Such an execut ive can , however , be
achieved with a relat ively small number of productions (see the discussion of a PS for GPS,
Ryche n -’r , 1976). The at t r ibutes , kept as separate e lements in Working Memory (due to
the var iat ion in their relevance to dif feren t goals , it would be cumbersome to keep them
tog e t her in one) , are held together by associat ion , throug h a token for the goal , GOAL— S in
the following:

(CO O L OBJECT (HOVE TRUE) CO O L— S ORR I1NCEI (ENT—3)
(COOL SUPER (HOVE TRUE) COOL — S COOL-?)
(COOL D IEF E PES C E (HOVE TRUE) COOL — S (LEFT SIDE LO U))
(COOL ST O TU S (HOVE TRUE) CO O L—S SUS P[NOED)
(COOL TYPE (HOVE T RUE) C O O L— P TR ON SFOR r1)

Coal attr ibutes can be used to give AND--OR structuring to a collection of goals - , and can
indicate how t h e search is to continue when a success or fai !ui-e occurs. Such goals need
to be in Working Memory when active , but are ii o~t convenientl y stored in Production
Memory on becoming less- act ive. Such storage s i mp ly involves collecting the at lr ihutes
for a goal into a sing le ac tion side of a new production , to be evoked by the name token
of the goal , on demand (presumably that token is included in the at t r ibute of some o~ or
goa l, arid has become relevant to further progress). The PS approach to backtracking is,
f i rs t , to avoid it wherever possible by anal yzing the problem and including, mo re
inte lligence as heuristics and domain knowledge. But ‘ - ‘hen necessary, it can be easily
achieved wi thin suc i a comp lex goal fr amework , by making explicit the information on
available a l ternat ives at choice points in the search , and by augmenting the execu tive to
make use of it (see Rychener 1976 for an example of how this worked out in pract ice) .

6. Fork-join: Because ti ght control is not required , the work on several goats can pr oceed - -

as if asynchronousl y. (A rea l i s t i c simulat ion of this might occur if con f l i c t resolution were
loosened to allow more than one production firing per cycle.) Some process evokes a
nun,ber of other s (“fork ”), and they each develop their results incrementall y, react ing to
things in the to ta l Working Memory s ta te . The “join ” consi sts of a production to test that

8 2.1

— - -— . -. - ~~~~~ -~~~~— - ~~ ~~~~~~~~~~~~~ - -- - -~~~~~~~--

r~~

’

~~~

’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..
~~~

.. 

~~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 

-

Al 0 PL Examples of Control Requirements - 2.1

results are obtained by t he various processes. Sometimes more control is necessary to
ensure they all complete before oilier productions become act ive: a tes t production
recognizes some part of the desired results and re-evokes the incomp le te aspect s , by re—
asset ting their goals , thus r-naking them m ore recent and dominant according to conflict
resolution. Sequencing goals as in the fal l-hack control case above can he used to evoke
the checking of validity of the “join ”. Such si gnals would not domina te until the other
actions had run t heir course. .

7. Default/ U pdate: Steps in a decision are organized as an initial step in which a default
answer is established in Working Memory, and then other productions are allowed to
modif y that result according to various special—case conditions. As in fork—join , sequencing
goals can he used to enable the next stage of process ing to take place.

S7 ( F I N D  BO UNDORY (111)1-IT) l OWER (RONC E 1 40 )  PROUND 17)
— —> (F I OW BOU NOO RY (HOVE RESULT ) LOUEII I (ROU GE J 17)) -

( F I N D  BOUNOI1RY (I-lOUT) HIG HER (ROUGE 1 4 0 ) 000UNIJ 17)

57’ (FIND BOUNDR RY (HOVE RESULT ) LOW ER rN (ROU GE =R1 = ‘2 )  I ~ =C1
(O BJECT LOCO TI O N (HOVE TRUE ) >H S ~R 2 5 = 11 FOR =0 )

- — — > (FIND BUON DORY (HOVE RESULT ) LOllER =11 (RO NGE =R1 = R2 ))
(DELETE .=C 1)

Here , the problem is to find the object wi th  the highest location near a point v.’ithiri a -

— range , a simp lified one—d in-c iss ionaf case of the problem of finding space to place an objec t
in a leg ion. This can be clone more concisel y in the erie- d i r cos io na l  case lhan is exhibited
here , but this default approac h is useful in more complex hidh:i —c flm en : ic-nat cases , where
the various cas es -  arising prohibit expression as a sing le complex condition. The goal to
find the higher boundary (second action in 57) repres en ls a continuation action that will
take over a f te r  any updat e productions fire. -

2.2. I terat ion
__and Possibilities Ge ne rat ion

Iterat ion is a process in which the same steps are repe ate d a number of limes as
dictated by the members of some given set of dala obje cts.  Gene m ation of possibi l i t ies is a
converse process , crea ting a set of o bjects according to existing memory context or
cons- I rain ts. Generation poses control  problems when it occurs in a con tex t  in whic Ii conic
othe r process is seeking the generation of an element with pa rt icular properties or
consequences , whereupon the generation stops. Often the test for whether generation is
to stop involves considerable computa tion , so that there is a problem of maintaining for
the g e - m i n te r memory of its s tatus with res pe ct  to internal control and the set being
generat ed .

1. Deliheratc ‘oopc: Iterat ion ta k es  place ~ndnr the cont r o l  of an exp licit goal. Th is- loop ing
goa l appears n cact i  producti on , and is me - a ss o r te d  into Working Memory at each i t e i , t i o n
to maintain its dominance wi th respect  to confl ict reso lution. In pract ice , tlie productions
might he separated into ‘ body ” productions , which do the mair, work of the 1oop, and
“bookkeeping ” productions , which updat e sta tus inform a t ion and te s t  for t c r rn~n,ition.
A l te rna t i v e l y ,  each production can contain both the body and bookkeep ing portions (a less
modular form). An ex amp le of (he sep a rated form:

_ _ _ _  
_ _ _ _ _ _

-~~~~~ -~~~~~~~ -~~ 
-.-.---—- -a-- m -



—--

~

=-

~~~~~~

.-—-,

~

—“.

~~~

. ~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.-—-. ~~~~~ ~- ——-..- ~~~~~~~~~ ~~~~~~ S

Al o PL Examp les of Control Requirements 2.2

II (140R0 LIST (WANT GATHER) SPECIAL IN =C) $ ~C1
(CHUNK TEXT (H1)V~ TRUE) =C ~W .rX ) S =C2

—— > ((lORD LIST (WAN T GATHER (STEP 2)) SPECIAL =IJ)
=cl -

(CHUNK TEXT (HOVE TRUE) =C .~ X )
(DELETE ~C2)

— - II’ (IIORD LIST (WONT GOTHER (STEP 2)) SPECI A L = 1-I ) $ =01
(WORD CLOSS (HOVE IRUE ) SPECIAL OF =w ’
(I -lORD LIST (GATHERING ) SPECIOL .~ X ) S =C3 

-

(I-lORD LIST (GATHERING) SPEC IAL .=X =W)
(DELETE =C1 ) (DELETE =C3)

Ii’ (I-lORD LIST (111)1-IT GOTHER~ SPECIAL IN =C) S =C1
(CHUNK TEXT (HOVE TRUE) =C) - -

(WORD LIST (Cfll}IERINC ) SPECIAL . = X )  S =C3
——> (1- lORD LIST (HOVE TRUE) SPECIAL .= x> - -

(DELETE =C3) (DELETE =C1)

The loop is to collect all the words in the text of a “chunk ” that are of type “special” into a
separate word list. 11 and Ii” are the bookkecpinr productions (time tatter being the
termination ) , and 11’ is the body of t i~ic loop. 11 and Ii’ alterna te in firing until the
termination condition occurs , detected by 11”. A new notation element is “

.
“
, which is used

to mark segmen t var i a bt es , var iables that matc h an arbitrary list tai l  (ordinary variables
only matc h a sing le list element ) . Note that time occ urence of “~-C1’ in the act ion side of Ii
causes a re-insertion into Working k-~:ri nry of the goal of time production , an act necessary
in general to keep thc -~ loop productions dominant in on ft i c t  resolution.

Generall y, such an i terat ion structure is- used when ti me body of the loop consists of many
produ ctions , making ii timo re aw kward to include time bookkeeping actions in alt the bcd y
productions as would be simple to do in this r~ amp le (essentiall y, combining I i  and ~
dropp ing time ‘ s tep 2” goal).

2. Sing le—p roduction iterations: Only one f hmi re  is done over time iteration , so that a s i ng le
production expresses the action at each point along \ ith loop incEk eep ing. Typ icall y, this
is USed to emit  sub goals for each element of a s r t , along with a re-a ssert ion of time
iler ation goal; it is also used to collect element s- i nto a list in s - o n e  order , where thin
newl y—up dat ed list s e rv es - to re—evoke the sing le production and continue the loop. It
sh uld he cl ear from t ime preceding examp le how suc im a fo mni is a hievcd.

3. Parallel i terat ion:  This is looping in which l i e -  i terat ion takes -  place as a result of having
conflict resolution allow more than one production firin c & per cycle , rather t han under thie
control of exp l icit looping goats. Time productions s pecif ying tIme action arc v- -’ r it te n as if
for a sing le object in a set , and ti me multi ple fi rin g ensures that all elements are processed.
ihis has been used (Rychen er , 19 76) in generating language for rep l ies in natur al
languag e programs (e.g. for several s im ilar descri ptive noun ph rases a t thie same time), in
expanding in breadth-f i rst  fashion transit ive dala relat ions (cf. spreading activation in a

semantic network ) , in simp le combinatorial generation processes , w h ere a sing ie condition
is fulf i l led by a number of generated possibil it ie s , and in other uncomp licated i terat ions.
There are two kinds of this parallel i teration , ju st as for the deliberate i terat ion above:
sing le-production and multi ple-pr oduction. This- capabi l i ty is not part of OPS at present.

10 2.2

-.—‘-- -- — --—. - —_

-

-- _ — — .-~~~ -----— ~~~~~~ -~~~-~~ - - ~—.—~~
-- - -- ~~—~

-.-_ .- -



- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -~~ -—“

Al o PL Examples of Control Requirements -
- 2.2

~~~. Generation of possibilities: As mentioned above , tIme main problem wi th this process is
rima iimta ining a memory of the status of time generator , especia lly those items already
gs ’ rm erated and t imose rema ining to be generated. There are a large number of way s to
h m - -,nct te this , due to t i -ic ini - icrent f lexibi l i ty of tIme PS archi tectur e , part icularly its two
I1VI iO t i es .  For instance , po~si bih it ies can be kep t in Working Memory, and erased as tried ,
if time set is relativel y small ; poss ibilit ies can be generated as needed, by sp e c i f ic
produc tions , wi th Working Memory storing what imas alread y been tried; and productions-
can ec orci the elements already genc-rated, so f l i t a simp le generator of all elements ,
lnllowed by s- ras ure of the eli ments already genera ted, followed by a selection from the
mr - i  m inin g elei iant s , can suff ice.

T iiei e are m nii~- mbc r  of decis ions to make in forming a generato r a-nd thus there is a space
of f lexibl e v- ~ y ’s - of respondi ng to time problem: v ’ l i d  I c r  to save time elements already
genera ted or those riot ~.e t genc rated ; whether to save them as prociucl or ms or as V 1ark ing

‘~~. M mory element s- ; wheth e r to save time c - le n ment s in a sing le memory s t ruc ture  or

r 

sc- i nra-t idy (for pro ductions , els - - i - - c n t s -  m ight he accessible individuall y wi t h the select ion
pr e— determined by exp licit conc li t loims , . ‘~ a - i t in the sanme production , witt i  a furt lmer
se lect ion nec r- r sary af ter  f ir ing the production ) ; \.—I m c tI m s - - r a produclion is set up to as - c c i

~ c iosi rcd ele ment s or era s - - n limo s-c already generated (ass uming time full set is in Worki ng
Menmory); w h ether to gene rate the entire set or somehow part i t ion it fo r more gradual
gene~ , i t i r m i i ;  whether the s- nt simouldi be computed and stored , or r cc r i r i put - r i  on du and;
a-nil w lmetfmer to update lImo s t a tu s  of the ge nerator by erasure f r c  Vvor k i r ; k~s iaory, by
superseding an e ;-nsl ing product ioa w i t h  an vI: c ia t c 1 on~ , or by addino. eten c- il s to Wo r king
Memory that l eer to be tested and ceclud ed in fur ti mer proc iusti orm mea tch i g v,ithin the
generator .

2.3. H ier a rch ica l  o~~an izat ion -

There- s- re ihree mechanisms used to achi eve so r m e kind of P ci: -shy: the sl ipi- i rgoa l—
subgoal re Inl io ms.hi p represented by productions Pi~ t respond to a goal by rot t ing  Li~~~

sub goals; a tt ~ ching ta rs  to data items , amour mh im~’, tc pointers for a graph structure;  and
organiz ing proce r s-u- s in a bottom—up h mi c r a rc my, w h e r e  each level is evoked as c-c ults f rom
time lower V -eel are developed. Time f irst mecimanisni has already re d yed a t tent ion in time
examp les above.

T~’~ ~,econd nmec lma nis m is used to keep t rack of P ee- ’ - t i  ucturec i cxpressicns , as

r,mig l-,t be used to represent l i m s a r  al ge braic equations (cf . Bobroc. ‘s ~lucierml). It is also
us-ed nmore gene ral l y to kr- c-p t r a c k  of goat s t ru c t  ru-s .  Ar. an exa mp le , suppose a se m Iot ic e
in an al gebi a wor d problem were bci rmg parsed to fo r an arith m etic r-~ i- r i-s - c on Time ma in
opera tor  in t ime - - i m t e i mc n  would cause time text  to be sp lit into lof t  and ri ght o p e r s m d - - , and
l i o n  those would be f u r t l  or parsed In dct r- rmin e the ir express - ions. Labets m pht he set
up to record t I m - relation betwe e n time operands and time containing exp ression as fol lows:

( EXP A LABEL (HOVE T RUE) LEFT UHliHi -~ PARENT Cli US -

(EX O R LORU L (HA VE TOWE l RIGHT C1IUSi— 6 1- u - NT C H U US— 3)
(LXPR O PE RATOR (HOVE TRUE ) TIM ES FOR CHUNK— 3 )

Suppose the chunks of tex t  for time left and right halves were pars-rd to produce ,

£ 1

- ~-. ~~~~~~~~~~~ - --- ---‘ --- —~~-‘...~—- —. —~ .- - --



- ~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
- 

~~~ 
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

A! 0 PL Exampte s of Control Requirements 2.3

(CHUNK EXPR (HAVE TRUE ) CHUNK—S (PLUS X Y)) -

(CHUNK EXOR (HAVE TRUE) CHUNK— 6 2)

Then a productio im can recognize this and combine time results:

HI (CHUNI: EXPR (HOVE TRUE) =C1 =E1) -

(EX PR LABEL (HOVE TRUE ) LEFT ~C1 PARENT =C)(EXPR LABEL (HAVE TRUE ) R1CHT =C2 PA RENT =C)
(CHU NK EXPR (HAVE TRUE ) =C 2 =E2)

- 
( EX PR OPER ATOR (HAVE TR UE) =0 FOR =C)

— — >  (CHUN K EXPR (HOVE TRUE ) =C (=0 =EI = E2 ) )

Here , time various tags have served to record the structur e , and the variable
bindings have used time tags t-e recover it in t Ime final expression. Time tags are ad hoc , in
the sense t lmat other s y s t c r s  of tags are used for other tasks , e.g. maintaining goa l
interrelations imips as mentioned above. But time PS approach allows f lexibi l i ty of choice to
mc e t task demands. - -

Time third hierarchy mec hanism, bottom- - up organiza tion , is used in processing natural
language text , representing lexica l , syntact ic , semantic , and pragmatic levels of processing.
Like time f i rst  nmechanism aba-- c , it is reprcse imted in Production Memory as connections
between time results produced by a level in the hierarchy and the data and goals of time
next h i gh e r  level. For instance , a word recognized at time lexical level is g iven a word
cla s s - , w h ich t h en can be usrci at a grami- rmatica l level to cimeck that the class occurs
appropriately for time grammatical context; the success of the granmr iar c h eck (represented
in Working Memory as the result ing g ra mnmatica h function perfo t  timed by time word ) then
leads to tIme lowest—level sen-an tic consequences , and so on. Note timat timis is coun ter to a
s ty le t b mat woul d est ab lish goals to apply time various knowledge levels. Rathe r , the
trigger .mg of a level is directl y dependent or lower-leve l results. In many cas es , the
higher levels are evoke d only a f te r  a number of words imave been processea , allowing a
suitable higher—leve l  result to he assembled (see Rychener , 1976 , for de tails ) .

2.4. Selection -

Time power of t he PS niatctm is exp loited in comp lex se lections , which occur quite
frequentl y in Al task s - .  Time s-c selections typ ic.ai i y conjoin a number of conditions , each of
whmichm narrows clown the set of ma tciming candidates. Tv. o powerful means for fac i l i t at in g
thu r. narrowing down are: tIme use of cor imputa ble predic ates on time values bound to nmatcim
vari ables (as opposed to pat tern matches that s imply bind variables to values f rom
corresponding Working Mem ory items); a- ric h the use of a “maxinma l” (“riinirnal”) operator ,
w h ich selects from a set of possible va ria ble biimdin~,s- during the m a - t cl m tIme one that is
maximal (minima t) according to a comput ab le predicate. Time maximal (minimal ) operator
corresponds exac lt y to the narrowing-down concept , a-nd it expresses concisel y what
would otherwise he a comp lex logical cond ition. A t present , tIme max imal ar mc i inininmal
operators a- re not imp lemented in OPS. The “>“ and “ -~~~

‘ variable prefixes occurring in some
exanm ples above are special cases of time use of com putable predicates in the match. OPS
does h ave more generality in this respect t h a n  is indicated in examples imere.

I
- Some examples of complex selections:

12 2.4

— . —— -—~~. -~~ - - — —~~ - -
~~~~~~~~

——
~~

— - —
~~

—
~~~~~

- - 
~~~~~~

——
~~~~~~~~~~~

- - -
~~

—
~~~

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ---~~ ~~~~~~~~~~~~~

___ ~~~~
—,

~~ --- —,——-,---- ,,—=‘ -.--,—-- —
~~~~~~~ —S 

____
~~ 

-~..% ?fl ~~~~~ 
— 

~~~ —

-
—

P.! o PL Examples of Control Requirements 2.4

1. Selection of an old goal in GPS: This complex tes t involves conjoining the following
tests: the goal is type Reduce; the goat is not in state “meth ods--exhaus ted”; time goal is
minimal according to its diff iculty; time goal’s supergoal is not an apply type goal where
thmere also exists such a goal whose supergoal is a transform type goat; and time goah is -
minimal (or equivalently niaximal) according to some arb i t rary predicate whose function is
to select irom a set of otbierwice-equiv alent c imoices - in OPS, one arbi trary way is
automaticall y provided in the hexicogr apimic event recency order , which dist inguisimes
be tween elements according to their time of assert ion .

Ti m is comp lex selection can be represented by the production ,

Cl (SELECT GOA L (WON T) OLD) -

(GOAL TYPE (HAVE T R U E) =6 R E D U C E) -

(NOT (GOAL SIATUS (ROVE TRUE) =6 METHOO3—EXHAUSTED)
(GOAL DI- FI CULTY (HAVE TRUE) =6 =14)
(M I N I M A L =N GRIAT ERP)
(COAL SUPER (HAVE TRUE) =6 =62)
(NOT (GOAL 1YPE (I-4fl\ ’E TRUE) =5? APPLY)

(GOAL TYPE (HAVE TRUE) ~G 1 =63 REDUCE)
(NOT (GOA L STFi1US (HAVE TRUE) G3 IICTHOD S-=ExRA USTEO
(GOAL 0100 ICULTY (HAVE TEWE) =63 =14)
(COAL SUPER (HIVE TRUE) =63 =64) -
(GOAL TYPO (HA\’E TRUE) =64 TRANSFORM)

(IIINII-1AL =6 ARBI1PARY P)
—— > (SELECT GOAL (IIUV[RESULT) =6)

Note that the next—to- t ime — ins t clause in time select ion to be done , as s ta t e d informal l y
a- i)() - - -s - - , imas an awkward expression a-s tIme seventh condition in Cl. Time I r u v i m a l and
nminimai opera tors are designed to avoid sucim code , but a-re not suffic T - nt l y pov - u r h i in this
case. For ins tance , t ime f i rst “mit mi nmal” condition Pm C l is equi\’alent to “not : a reduce goal ,
not meth ods—exhi a- usted, with dif f iculty less t h an n”. This example ’s- pr incip ! lesso rm ,
perh aps , is t h at the NOT operator as formu lated ic-re is very powerful in expressi n g
selections. Timoug hm maximal and minima l supp lement its power , there immay he stil l bet ter
pr i mit i yes.

2. Select a block to put next in a stack: This test involves: time block has not already been
tr ie d, for t h i s st . s-k; time block is not alrea d y on time stack; this block is maxinmal on block
size of suc h blocks; this block is minin mat on some arb i t ra s -y predicate (cf. the last test in 1.
above).

This select ion arid the followin g one a- re niade riore con- ipticat ed than they see m because
time size of a block is not stored explici t l y in W ork ing kJ-c~~ory but is always computed as a
funct ion of t im ’— three linear dimensions of tIme block (th u s is an a rb it rary re s t r ic t ion
inherited from time blocks prob! em — sohvin g PS previously implemented; it is kept lucre to
i l lu s t ra te a- requiremen t for the power of maxi m al). The actual s-~ :e funct ion used can
depend on time context. Ji m t h is case , time h e i gh t of time block is irrelevant , for in s tance.
The condition lucre is expressed ,

(MAXIMAL (PLUS =X =Y) GREATERP)

That is , the pair such that their sum is- minimal is wanted , where X and Y are bound during
th e ma tch to t h e leng th and wid th of the block.

13 2.4

L _ _

- . -- -
- ~ ~~- L m _ ,_~~~~~ ~~~~~~~~~~ -~ .—~~--- —. —- . -~~ ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

- - — - - _ - ‘- ..=~~~~~ -----.- ~~~~~~~~~~~~~~~~~~~~~~ ‘
~~~~~~~~~~~~~~~~~~~~~~~~

‘ - ‘
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Al ~ PL Examples of Control Requirements 2.4

3. Select a block to move to make space: This involves: the block is on the block on which u
space is to be made; the block is large enough -o tha t moving it wil l create the needed
amount of space; the block has minimal size among such blocks; the block is mininial
according to some arbitrary predicate (cf. the last test in 1. above).

- 3. Summary -

The purpose of this extended present ation amid discussion of detailed examp les has
been to exhibit a number of useful co ntrol requirements for testing new PS desi g ns-. Time
aspects of control touch ed on here are cons idered basic , especially for A l applications , and
are rat her dif Iere rmt from control constructs in more conventional langauges. This is due
bot h to domain character ist ics and to the unique perspective imposed by using PSs. ’
Surveying tIme exaimiples presented , the contribution to control by the cisc- of Working
Mem ory recency as a conflict resolution priimc .ip le (rule 2 in Section 1.1) is central. It
allows th-3 expression of control demands as global goals , avoiding time ad hoc in te r—
production signals t h at plagued earl y PS programnming a ttempts. The goals - used lucre
ach m ieve control using conventions that are uniform over all such goals , rather thman p r iv ate
to particular productions. A secondary purpose has been to present evide n ce t h at PSs
have openness a-nd flexibility in tIme varieties of control ach ievable in A! programs , to an
extent surpassing conven tional control .~truc turcs.

3.1. Ack now~~~~~=nt s -

Ailen Newell provided the initial motivation for exp loring the power of PSs as
progranmming languages. Lanny Forgy aiid John McDermott irtip lenuented time OPS language
used in this paper , improving on past PS designs.

This research was supported in part by the Defense Advanced Researc h Projects
Agency under Contract no. F44620-73-C-00 74 amid monitored by the Air Force Office of
Scientif ic Research.

4. References

Bobrow , D. C. and Rap lm no l , B. R., 1974. “New progr a-mmi nmg languages for artificial
intelli gence research” , Computing Surveys , Vol. 6: 3, pp. 153-174.

14 4.

—

~

-

- ~
- ---.-----‘

~~
-- ---- --.--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-N Y - - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

AL 0 PL - References 4.

Buchanan, B. C. and Sridharan, N. S., 1973. “Anal ysis of beh avior of chemica l molecules:
Rule formation on non-h omogeneous classes ol object - ”, Proc. Thmrd I n t e rna t iona L
Joint Conference on Arti f icial I ame / ? i ç v e r L r ’r , pp . 67-7 . Ako Stanford Al L~cmo 215,

$ - Stanford University Computer Sci enc e Depa rt ment .

Davis- , R., Buchanan, B. arud Sh iort hiffe , E., 1975. “Prod uct ion rules as a representation for a
knowledge-based co ns ultation program ”, Ps-po rt STA N-CS-75-519 , Memo A IM-266.
Stanfor d , CA: Stanford Univers ity , Cor imputer Scie nice Department.

Davis, R. and King,  J., 1975. ‘1- n overvi ew of production systems ”, Report
STAN-CS-75-52-4 , Memo A IM-271. Stanford , CA: Stanford Universit y, Computer
Science Department.

Evans , A., 1964. “An ALGOL 60 co r~piier ”, in Goodm~ im , R., Ed., / Innual Review of Automatic
Pro gr annin in~ , Vol. 4, pp. 87-124. New York , Ni ’: Pergamoii Press.

rorgy, C. and McDemniott , J., 1976. “The OPS referen ce nua nmc ia h” , Pittsburgh , PA:
Carneg ie--Mellon University, Departrne mit of Cor-ilmute r Science.

McDermott , J. and Forgy, C., 1977. “Production sy s - t e n conf l ict  resolution s - t i  ateg ies ”, in D
A. Waterman amid F. Hayes — Rot h , Ed-:- ., P nttc rn -D i, - c~ tc-c1 Inf e r ence  Systems, New York ,
NY: Ac ademic Press. Fort imcoming. -

Minis-ky, M., 1967.  Counp u tn t ion :  F in i t e  and In f mr um e Ma chirz cs , [ img lcwood Cl i f fs , NJ:
Prcnm tice— Hall .  Chot ite r 12.

Newell, A., 1972. “A theoretical exp loration of mechma ,uis rns for coding time stimulus ”, in
M- ion , A. W. and M a r t i n , E., Eds ., Coding F ’roccss es in Human t c ~nory, pp. 373—434 .
Wasiming ton , DC: W iimsto im amid Sons.

Newell , A. and Simon, H. A., 1972. Human P,-obl --m Solving, Eng lewood Clif fs , NJ: -

Prentic e—Hall.

Ry hener , M. D., 1976. “Prod uction systems - as- a pr ogramm ing language for ar t i f ic ia l
inte lligence app lications ”, Pit t - .-hurg iu, PA: C ac r m m n- g ic ’ - -~~sIhon University, Depart m ent of
Computer Science.

Waterman , 0. A., 1970. “Ge neral izat ion learning tec h niques for automat ing the learning of
heuristics ”, A!, Vol. 1, pp. 121- 170.

15 4.

-- —U—-— -- -
~~~~~~~~~~~~~

__ - ~~~~~~~~~~~~~~~~~ ~-.~~,ij~~aliiii1i iiA

.4,

4- -
,
~~

.
;~~~~~~~~~

. ‘.
I

‘ . .. ~

*.

:

- ~~

F

_~~(

-
-

~
- —

(k

-
~~

~~~ ~~~ ~;_ - -

~~~~~~

- ‘

~~~~ ; 
~~~~~~

,
-

- - : 1 _,

-

.- -~%
-

-

~~~- , ~ ~ 
/ - :  ~~~~~ - 

~

<c~ 
- 

~ 
-
~~

- - - -

h - - - ~ - 
- - 

- - —

- ~
- ~~~~~-

-
~~~~~~

-
~

-
- ~~~~~~~~ c- ~~

- - ~~ ~ - ~ — -~~

- -
- - ~-‘ -,~~- ~- - -

- —
- -~ ‘- - ~r’

- ~~- -

~~

-
i-

~u

- .
- -

- - ~~~~
- - -

~
/ \ - / -

: -

-
- ;

-
. - - -

“

- -
~~

-
~

-

-
ft

& _ 4 t — \
_

-
-

— — — 4 —

- - 4-

—4 4

: -

—

~~~ - - -
- __ _

- y -  /
~~~~/

~~~~~ - 4

~ 
- 

‘~f ~~

4

- - 

- ~/4 ~

-~~ 

;: - ~ -

~~/ 
. 

- - 4 :r

4 ~ 

- - - 
4
.

7 ~ -

-
~ 

- 
- 4 ~~c 

-

~~~

-
-

- 7

-

-
i : ~ ‘ ~ ~

~~~~~~ 
- 

~~~~~~~~~

-
4

- - : ~~
-

- ~
~~~ ~ ~ - 

- 
- ~~~ ~ 

- - 

4 -
~- 

- 4 ~ -- ~ 44 -
~~

- ~ 
i_ -:- ~ ~ 

4 ~ s- 
- / ‘4 - - 

/ 4

_ _ 1_ ~ 

4~~~4 ~
- 

- t  4

//~



- 1,,-,_

~f~~ - - :~L4 S ~
- ‘~ 

~~ii

,-
~~-- f 

4 - —

, ~~~~~~~~~~

- 
- - 

_fr
_

- -  -
~~~~~~

-

-~~~~~

-

~~~~ 
- 

-

, 

- 4 -  

:~~
2
~

/

- ~~~~~~~ ~

4 4 
~ 4 

5 .
~~~~~ -~~~

-
4 — . ~ ~~;-

~ 4-
-

4- :- ~~~ - - 4 - ~ -

-

~~~:- • 
~

- 
~~

- 
- 4 — 

- —4 - ‘~41’~ ~~~~~~~~~~~~

t ~ -- : -  ~~~~~~~~~~~~~~~~~
~444~ 

~~~~~~~ ~~ 

~~
~~ / ~~~~~~~ /

“

4
4~~~~ 4~’ /

~ 4

- ~~ - 4 4/ ~1~~
_

~1
_

~ —,~- 2 - - ~- - - -
~~~~~~~ :i~~~



9
_

_ 

/
_ 

~~~~~~~ ~~

“
4-

/~ ~y;~ ~

-
.

- 4
- 1

-
~~ 4 45 ~ ~

‘-

~~

- ,_ -

- -

4 ~~
- 43 ’

- -

~~~/ / 
-

- _
~~~~ 4

_
4 _

-/_ _
~~~ ~

- ~ ~

- 
- 

- /-~~ /

- - - 

- 
- ~~~~~~ /

- 

-4 -

~~ - 
~~~~~~~~~~ 

-

-

~~~~~ 

/ ¶

- 

- - 
~
- - 

- 
I ~~~~ ~~ 

I - 
~~~4 ~ ~ ~ 

,
-// ~~

4 / ~~~~~~ ~ ~~

-

~

,,~
- -c~~

-
~~t ~~

-
4 k ~

4 _ 4
-

s-
~~’4\~~

’
~~~~~~ 

4 ’  - ~ 
- - 

~~~ ~ - ~ 

-

.1

/

- -
- ‘

- - -
- - 4 _ _ ~~~~~ _

-
~~~

- 
- - - 

- 
- _

-s

- - -~~~~~ i

~ 
-c 

~ 
~ 

- 
~ 

7 - 4/7k ~ ~ ~

/4 ~ 
- 

- - 
- 9

-
- -

-
-

-

- ~ 

~~~~

_f

- -

‘~L ~

- - -
- ~~~~ ~~~~~

~~~~~~~~~ ~~
-

-
-

~~~ 

-

~~~~~
- - 

-
--i. -

- -
~~ 

4 -  - 

_
/_ - U

/ 4- -

4 

- : ~
‘ 

~ 

~t ~~~ 
- -


